A Form of Alexandrov-Fenchel Inequality

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a relative Alexandrov-Fenchel inequality for convex bodies in Euclidean spaces

In this note we prove a localized form of Alexandrov-Fenchel inequality for convex bodies, i.e. we prove a class of isoperimetric inequalities in a ball involving Federer curvature measures. 1991 Mathematics Subject Classification: 52A20, 52A39, 52A40, 49Q15.

متن کامل

A Problem of Alexandrov

0 Introduction For n 2, Let M n be a nite convex, not necessarily smooth, hypersur-face in Euclidean space R n+1 containing the origin. More precisely, M n is the boundary of some convex domain in R n+1 containing a neighborhood of the origin. We write M n = fR(x) = (x)x j x 2 S n g, where is a function from S n to R +. Let : M n ! S n denote the generalized Gauss map, namely, (Y) is the set of...

متن کامل

On the mixed $f$-divergence for multiple pairs of measures

In this paper, the concept of the classical f -divergence (for a pair of measures) is extended to the mixed f divergence (for multiple pairs of measures). The mixed f -divergence provides a way to measure the difference between multiple pairs of (probability) measures. Properties for the mixed f -divergence are established, such as permutation invariance and symmetry in distributions. An Alexan...

متن کامل

Complete Form of Furuta Inequality

Let A and B be bounded linear operators on a Hilbert space satisfying A ≥ B ≥ 0. The well-known Furuta inequality is given as follows: Let r ≥ 0 and p > 0; then A r 2 Amin{1,p}A r 2 ≥ (A r 2 BpA r 2 ) min{1,p}+r p+r . In order to give a self-contained proof of it, Furuta (1989) proved that if 1 ≥ r ≥ 0, p > p0 > 0 and 2p0 + r ≥ p > p0, then (A r 2 Bp0A r 2 ) p+r p0+r ≥ (A r 2 BpA r 2 ) p+r p+r ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2010

ISSN: 1558-8599,1558-8602

DOI: 10.4310/pamq.2010.v6.n4.a2